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Abstract—Mathematical models are widely used to replicate natural phenomena. They represent the growing universe, as well as
the spreading of diseases. By concentrating on the essentials of these systems, mathematical models are perfectly suited to study
system behavior under altered conditions. Defining a model for a given system is a challenging task and is commonly an advancing
process, where current models are updated and competing ones designed. Quality quantification is hence a central task in model
development. In this paper, we focus on the comparative analysis of competing models. We integrate state-of-the-art techniques
and propose a novel topology-based measure to quantify model quality. Our novel measure particularly concentrates on structural
stability in parameter space. Additionally, we design a model landscape that communicates similarities among model candidates.
Both methods are demonstrated and evaluated using an example from drug development.

Index Terms—Model analysis, comparison, persistent homology, quality measure

1 INTRODUCTION

Mathematical models commonly describe a large variety of systems
from numerical simulations in engineering, over chemical processes
in the life sciences, to business simulations in the social sciences. The
goal of the models is to describe the essential features of the system
to facilitate in-depth analysis. All models have in common that they
take a set of input variables and, based on these, compute output vari-
ables. The task of the models is to predict the output as reliably as
possible. As models are simplified versions of the real world and as
measured data is inherently erroneous, predictions and real data hardly
ever match perfectly.

Hence, several competing models are developed and choosing the
best one is not always straightforward—there are both constraints in
accuracy as well as computational complexity and/or ease of imple-
mentation. Model quality is commonly assessed using some sort of
mean error. This is a highly-simplified piece of information that re-
quires a lot of experimenting and user knowledge to accurately judge
the quality of a model. Several visualization methods have been de-
veloped to facilitate quality validation—see Sedlmair et al. [17] for a
concise overview. Among the earliest of such approaches is a method
by Spence et al. [18], who designed visualizations for engineering de-
sign. Using scatterplot matrices and scatterplots of a predefined set
of parameter values (such as tolerance specifications), they facilitated
the exploration process. Mühlbacher and Piringer [14] proposed a
framework for measuring the quality of regression models. For geo-
scientific simulations with few parameters, Unger et al. [20] devel-
oped a method for completely enumerating and exploring the parame-
ter space via standard statistical graphics. In a similar vein, Bruckner
and Möller [5] focus on exploring the parameter spaces of visual ef-
fects in 3D scenes. For known and fully-enumerated parameter spaces
in the context of visual prototyping, Matkovic et al. [13] developed a
visual steering approach using coordinated views of scatterplots. By
contrast, Pretorius et al. [15] present an enumeration and exploration
workflow for parameter spaces in image analysis. Among others, their
system recalculates the resulting images for different parameter val-
ues in classification tasks. More generally, Bergner et al. [2] parti-
tion multivariate parameter spaces into regions with distinct output
behaviour. This can be used to understand qualitative differences in
model outputs. Rheingans and desJardins [16] focus on visualizing
the predictive qualities of different models, using both visualizations
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of probability distributions and self-organizing maps. In contrast to
our approach, their method is geared towards class prediction prob-
lems. Furthermore, they rely on data projections, which are often not
well-defined in modelling tasks. Recently, research focused on gen-
eral quality metrics for model visualization [3]. Our method falls into
the category of measuring “complex patterns” within the data space,
although our purpose is not the visualization of the data itself.

In this paper, we extend existing work in model validation. We
present the model landscape (ML), a visualization that illustrates the
quality of existing models. For this purpose, we compare the output
of a model to the measured data and among each other. We also pro-
pose a novel performance measure based on the topological analysis
of models that is more sensitive towards the predictions of models than
both the existing measures RMSE and R2.

2 QUALITY MEASURES FOR REGRESSION ANALYSIS

In the following, we assume that we are given a data set containing
n instances (measurements) with d attributes, such that each instance
can be represented as a vector xi = (xi1, . . . ,xid) ∈Rd . Every instance
xi has a corresponding scalar value si ∈ R. Regression analysis now
involves deriving a functional relationship between the values of the d
attributes and the set of values S = {s1, . . . ,sn}. There are numerous
methods (e.g. support vector machines) for this purpose and each one
results in a different set of predicted values.

We call each set S of predicted values a model of the scalar func-
tion. Since different algorithms for finding these models have different
complexities and behave differently, we need to judge their quality. To
this end, the data is commonly partitioned into a larger training data
set and a smaller test data set. The algorithm is then applied to the
training set in order to obtain a model. The quality of the model is
judged by calculating statistics on the test data set.

In the following, we will compare different quality measures on a
simple 1-dimensional example. Fig. 1, left, depicts the model (red)
and the measured function values (grey).

2.1 State of the art
The root-mean-square error (RMSE) and the correlation coeffi-
cient (R2) are the two most common methods for judging the quality
of a model. Given a model with n values mi ∈R and original values
si ∈R in the test data set, the RMSE is defined as

RMSE =

√
n

∑
i=1

(mi− si)
2 /n (1)

and aggregates the errors in the predicted values of the model. The
RMSE is not particularly sensitive because its aggregation and mean
calculation tends to mask errors in the model. By contrast, R2 mea-
sures how well the model and the original values correlate with each



other, i.e.
R2 = cor({m1, . . . ,mn},{s1, . . . ,sn})2 , (2)

where cor refers to Pearson’s correlation. R2 has the known weakness
of being unable to detect systematic over- and underpredictions of a
model [12, pp. 95–97]. It is also not suitable to describe the accuracy
of the model. Both measures are commonly used in conjunction to
outweigh the individual shortcomings.

2.2 Persistent homology
We complement these measures with one that quantifies structural sta-
bility in the high-dimensional parameter space. Going back to the
example in Fig. 1, we do not want to quantify the small individual
errors (which are already captured by RMSE), but assess how well
major structures are preserved. In our example, we want to retain the
links between local minima and maxima. Such large-scale structures
are well captured using topological analysis. Persistent homology is
an algorithm from computational topology that summarizes data sets
using topological features. Such features are, for example, connected
components (order 0), tunnels (order 1), and voids (order 2). Topology
thus focuses on the connectivity information of a data set. To describe
the connectivity of a 1D function, we look at its connected compo-
nents, i.e. features of order 0. To finish our example, we will treat the
1-dimensional case first and touch only briefly upon the multivariate
case. For detailed reading, we refer the reader to Edelsbrunner and
Harer [8].

The 1-dimensional case Given a function f : D⊆R→R, persis-
tent homology describes the connectivity changes in the sublevel sets
of f , i.e. sets of the form L−c ( f ,c) = {x | f (x)≤ c}. For discrete data,
the function only has a finite number of (local) extrema, which we
bring in ascending order, i.e. e1 ≤ e2 . . . , where each ei is either a min-
imum or a maximum. Starting from e1, we then perform a “sweep”
through the function values. We stop at each ei and consider the num-
ber of connected components of f . If ei is a local minimum, it will
create a new component and we identify it with c = f (ei). Similarly,
if ei is a local maximum, it will destroy an existing component and we
identify it with d = f (ei). We then look up the value c of the com-
ponent that was destroyed and store the pair (c,d). The tuples (c,d)
summarize the connectivity changes of f . By treating each pair (c,d)
as a point inR2, we obtain a diagram in the plane—the persistence di-
agram (see Fig. 1, right, for an illustration). Each red point in the dia-
gram corresponds to a min-max-connection of the red model function.
Likewise, we computed those topological features for the measured
data (grey points).

To compare persistence diagrams we have to define a distance met-
ric. Given two diagrams X and Y , their bottleneck distance is

W∞(X ,Y ) = inf
η : X→Y

sup
x∈X
‖x−η(x)‖∞, (3)

where η : X→Y denotes a bijection and ‖x−y‖∞ the maximum norm.
The distance between X and Y is thus the smallest supremum over all
bijections (see Fig. 1, right, for the respective matching). The bot-
tleneck distance is bounded from above by the maximum distance be-
tween the functions [6], making it very stable and robust against noise.
We have

W∞(X ,Y )≤ ‖ f −g‖∞ (4)

for persistence diagrams X ,Y corresponding to functions f ,g, respec-
tively. This property is known as the bottleneck stability (see Fig. 1 for
both distances).

The bottleneck distance is very insensitive to details of the bijec-
tion between the two diagrams. In practice, we thus calculate the qth
Wasserstein distance between diagrams X ,Y as

Wq(X ,Y ) = q

√√√√( inf
η : X→Y ∑

x∈X
‖x−η(x)‖q

∞

)
, (5)

for which similar stability results hold [7]. Calculating both dis-
tances involves calculating maximum weighted matchings in bipartite
graphs [8, pp. 229–236].
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Fig. 1: An example for the bottleneck distance W∞ between two per-
sistence diagrams. Left: Model function superimposed with a noisy
sampling or the original function. We keep track of the connected
components of f while sweeping from top to bottom. In the figure, we
marked (c,d) ≈ (−0.3121,0.5224) and show the local minimum and
maximum required for its calculation. Right: Superimposed persis-
tence diagrams and the best bijection. The bottleneck distance is the
distance between the two upper-most connected points. The remaining
points correspond to components that are created from the noise. In
all optimal bijections, these points are being assigned to the diagonal.

The multivariate case If we are given a multivariate data set with a
set of corresponding scalar values, we need to extend the calculations
from above. This requires a distance measure dist(·, ·), such as the
Euclidean distance, and a threshold ε—unlike the 1-dimensional case,
we need to approximate the domain of our function first. To this end,
we calculate a proximity graph on the data, connecting points x and y
if dist(x,y) ≤ ε . By searching cliques in this graph, we expand it to
a special simplicial complex (i.e. a generalized graph structure), the
Vietoris-Rips complex. We then assign the simplices in the complex
the scalar values of the input data (which corresponds to describing
the domain of the function) and use an algorithm by Zomorodian and
Carlsson [21] to calculate persistent homology.

3 IMPLEMENTATION

In the following, we assume that we are given a multivariate regression
task and several models. More precisely, we require a set of input data
in the form of an unstructured point cloud with points from D ⊆ Rn

and a set S of values fromR. We want to learn the functional relation-
ship between D and S, i.e. we assume that we have a scalar function
function f : D→R from which our input data are noisy samples. As
model values, we permit any set of values in R. Commonly, model
values are obtained using algorithms such as linear regression, support
vector machines, and so on. However, we do not pose any restrictions
on the source of the model values—any set of values from R is ad-
missible. We furthermore require a distance metric dist : D×D→R
such as the Euclidean distance. We use dist to approximate the un-
known domain of the function. Last, we require a distance threshold ε

that is used to define neighbourhoods in the data. This distance thresh-
old controls the coarseness of the approximation. High values of ε

yield data sets in which almost all data points are considered to be
similar, while low values of ε are more fine-grained. ε can be cho-
sen efficiently by calculating the longest edge length in the minimum
spanning tree of D, for example.

Using these data, we calculate the Vietoris-Rips complex of the in-
put data. We use the model values to assign each 0-simplex (each
vertex) in the complex a weight w. Higher-dimensional simplices are
assigned the maximum weight of their vertices. We then sort the com-
plex in ascending order to obtain a filtration of the input data. For
each model M, we thus obtain a simplicial complex SM . We calculate
persistent homology of each SM , resulting in a set of persistence dia-
grams {D1, . . . ,Dk}, where k denotes the number of models. We also
calculate a persistence diagram D of the original input data.

In the following, we will refer to the Wasserstein distance measure
as PH+W. By calculating the PH+W between D and each Di, we ob-
tain a measure of how well the value of a specific model approximates



ba
gg

ed
 tr

ee
s

re
gr

es
si

on
 tr

ee
s

en
et

en
et

 tu
ne

d

kn
n

lm
 fi

lte
re

d
m

5

m
ar

s, 
rid

ge
 tu

ne
d

pl
s, 

pl
s t

un
ed

ra
nd

om
 fo

re
st

rlm
 p

ca

rlm
, l

m
, r

id
ge

rp
ar

t

sv
m

sv
m

 tu
ne

d

cu
bi

st
 tu

ne
d

R²

RMSE

PH+W

distance to measured datamin max

Fig. 2: Comparison of three distance measures: For each model,
the graph shows the distance to the measured data using one of the
three distance measures. Models are linked across distances by lines
coloured according to model quality (red: good, yellow: medium,
blue: poor).

the original data. We then calculate the PH+W for each pair Di, D j of
persistence diagrams, resulting in a real-valued k×k matrix. This ma-
trix describes the pairwise topological distances between the instances
of the models. Using multidimensional scaling, we obtain a set of co-
ordinates in R2 that best approximates the distances. The resulting
point set describes the model landscape (ML) of the given models.
Each point in the ML corresponds to an instance of single model. We
colour-code nodes by the quality of their respective models. Distances
in the ML directly encode differences in the topological behaviour of
the models. If two models tend to result in the same predictions, their
corresponding nodes will be placed in close vicinity to each other.

4 RESULTS

In the following, we will demonstrate the model analysis in detail us-
ing an example from drug development. An important task in this field
is to predict the solubility of chemical compounds, i.e. how easily a
compound is being dissolved in a solvent. Solubility is is of paramount
importance if a substance is to be administered as a drug (e.g. orally or
through injection). Tetko et al. [19] and Huuskonen [11] investigated
a number of chemical compounds with known solubility values. They
derived a complex set of descriptors and used linear regression mod-
els (among others) to obtain predictors for the solubility values. In the
following, we will work with their database of 1267 compounds.

Each compound is described by a 300-dimensional vector of mea-
sured properties. As suggested by Kuhn and Johnson [12, p. 103 ff.],
we perform data cleaning and model training as a preprocessing step.
We compare the following models:

bagged trees Bagged model trees
cubist Cubist regression trees
enet Regularized regression w/ penalties
knn k-nearest neighbours
lm Linear regression
mars Multivariate adaptive regression splines
m5 Model trees
pls Partial least squares
svm Support vector machines
random forest Random forests
rpart Single regression trees
regression trees Boosted regression trees
ridge Ridge regression w/ penalties
rlm Robust lin. reg.
rlm pca Robust lin. reg. w/ preprocessing

In future annotations, the “tuned” variants refer to variants in which
parameter tuning has been applied (e.g. cross-validation) to improve
results. We use the ground truth of Kuhn and Johnson [12, pp. 221–
223] for our analysis. Using a combination of R2, RMSE, and man-
ual inspection, they partitioned the models into three performance
groups (Fig. 2).

The distance measure for the data points in R300 with mixed at-
tribute types is a combination of the Hamming distance (for binary
attributes) and the Euclidean distance (for continuous attributes). We
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Fig. 3: Histograms of distances between selected models and mea-
sured data: svm tuned (one of the best models), enet (one of the worst
models), enet tuned (to show the effects of tuning), m5 (judged differ-
ently by PH+W)

compute persistent homology for ε = 30 and use the solubility values
of each model as weights for the 0-simplices (see Sec. 3). Persistent
homology computation for each model takes about 6 s (with more effi-
cient implementations [1] available). PH+W calculations then take an
additional 5 s in total.

We first analyze how well the models agree with the measured data.
Fig. 2 illustrates the respective distances for the two classical measures
R2 and RMSE, as well as our new distance PH+W. Overall, the ranking
is fairly consistent. We observe homogeneous groups for the models of
varying quality (red, yellow, and blue). While R2 and RMSE have very
similar distances for most models, we observe alterations for PH+W:
There are several changes in the order of models within the groups; the
clustering of the high-performance models is more diverse. Two mod-
els (m5 and knn) feature distances that belong to better model classes,
i.e. m5: yellow→ red, knn: blue→ yellow.

The larger diversity between model qualities in PH+W can be partly
explained by the distribution of errors (Fig. 3). The top row compares
one of the best (svm tuned) to one of the worst (enet) models. The
overall shape of the two histograms is similar. We observe a general
tendency towards larger errors in enet. Variance increases from 0.44
for svm tuned to 5.23 for enet. There are also substantially more out-
liers, i.e. distances greater than 2.5. enet tuned demonstrates how both
error types (high variance and many outliers) are significantly reduced
by altered algorithm parameters (variance 0.78). enet tuned is ranked
by both R2 and RMSE as the best medium-performance model. Com-
paring the histogram of enet tuned to random forest (the worst model
in the high-performance group), we observe a significant increase of
low-error samples, while there are also more outliers. The influence
of this comparatively small group of larger errors is diminished by
the mean computation and makes differences between models very
blurred. In the application scenario, this implies that the prediction for
many samples is very good, but that significant outliers may occur us-
ing random forest. By contrast, the amount of outliers for svm tuned,
the best model according to R2 and RMSE, is substantially reduced.

To better understand the changes in ranks, we investigate m5 more
closely. With its average distribution of distances (variance 1.24),
m5 is a model of medium quality. This is reflected by the values
for R2 and RMSE. PH+W rates m5 much better and places it among
the high-quality models. To further explore model similarities, we
calculate the model landscapes using relative pairwise distances for
R2, RMSE, and PH+W (Fig. 4). Using the R2 correlation-based dis-
tance, most of the models form a dense cluster surrounded by multiple
outliers (Fig. 4a). There is no clear distinction between the quality
classes. The model landscape for RMSE already exhibits more struc-
ture (Fig. 4b). Many models of medium quality (yellow) are clustered.
The good models (red) also form a loose cluster with medium models
interspersed (m5, mars, and rlm pca). PH+W (Fig. 4c) features the
clearest distinction of performance classes. The red and yellow clus-
ters are clearly distinguishable, and the low-performance models in
blue are distributed along the periphery. Similar to RMSE, m5 is close
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Fig. 4: Inter-model distances for the three quality measures: The 2D model landscapes reveal for each measure the pairwise model distances
in high-dimensional space. Spatial proximity reflects short distances. The models are coloured according to a manual classification (red: good,
yellow: medium, blue: poor).

to the high-quality models while mars lies on the boundary between
red and yellow. The placement of m5 is caused by known instabilities
in the model [4]—its predictive quality is going to increase with more
data points.

A further advantage of the model landscape is that it facilitates
model selection for competing models. This is especially necessary
in situations where the model yielding the best overall performance
has a prohibitive computational cost. In our example, this holds for
cubist and regression trees, who take several minutes to be calculated
even on small data sets. Kuhn and Johnson [12] thus conclude that
the medium-performance models, such as lm or mars, may actually be
more suited for real-world data because they scale better to thousands
of data points.

5 CONCLUSION & FUTURE WORK

In this paper, we enhanced visual methods for comparative model
analysis. We introduced a novel quality measure (PH+W) for mul-
tivariate models based on the Wasserstein distance of the persistence
diagrams of models. The novel measure describes structural stability
in the high-dimensional space and is very robust against noise. We
also employed the model landscape, a 2D representation of pairwise
model distances, to explore relationships between models. We found
that PH+W is more sensitive in discriminating different models than
the commonly-used measures R2 and RMSE.

There are several possible enhancements to our system that would
further strengthen the analytic power. Gosink et al. [10] use Bayesian
model averaging to obtain a measure of the uncertainty of predictive
models. Integrating similar information into our visualization would
facilitate choosing a suitable model. With arbitrary model algorithms,
however, uncertainty analysis is more complicated because we usually
do not know the proper domain of the input function. Another aspect
for future research thus involves investigating how to strengthen the
domain approximation by persistent homology, e.g. via Morse-Smale
complexes [9].
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