
Online Submission ID:

EasySVM: A Visual Analysis Approach for Open-Box Support
Vector Machines

Category: Technical Paper

Abstract— Support vector machines (SVMs) are supervised learning models traditionally employed for classification and regression
analysis. Despite being one of the most popular classification models because of its strong performance empirically, understanding
the knowledge captured in a SVM remains difficult. SVMs are typically applied in a black-box manner where the details of parameters
tuning, training and even the final constructed model is hidden from the users. This is natural since these details are often complex and
difficult to understand without proper visualization tools. However, such an approach often bring about various problems including
trial-and-error tuning and suspicious users who are forced to trust these models blindly. The contribution of this paper is a visual
analysis approach for building SVMs in an open-box manner. Our goal is to improve an analyst’s understanding of the SVM modeling
process through a suite of visualization techniques that allow users to have full interactive visual control over the entire SVM training
process. Our visual exploration tools have been developed to enable intuitive parameter tuning, training data manipulation, and rule
extraction as part of the SVM training process.

Index Terms—Support vector machines, rule extraction, visual classification, high-dimensional visualization, visual analysis

1 INTRODUCTION

A support vector machine (SVM) is a supervised learning method that
is widely used in a variety of application areas. While SVMs have been
shown to have high accuracy in classification, they also face a variety
of challenges when we want to use them for data analytics. First,
conventional SVM approaches are “black-box” schemes in which
details of the model construction and prediction process are hidden
from the user. The user simply provides the SVM with a training
dataset, relevant input parameters, and a model will be constructed
for making prediction of unlabelled data. Other outputs that can be
retrieved from the trained SVM model are a vector that represents
the feature weights, and a set of training data instances called support
vectors. These outputs are unable to provide any insights for domain
users who want to better understand the reasoning behind certain
classification results. Thus, while the automatic “black-box” model
releases the user from laborious interactions, it may hinder the user
in terms of understanding and insight. Another issue that makes
gaining insight from SVMs difficult is the use of non-linear kernels
which typically improve the classification accuracy. There is however
a lack of systematic and effective method to select the correct kernel
functions and input parameters to give good classification result [3].
As such, tuning parameters in this black-box environment can be
extremely difficult and time-consuming for the user. In addition,
the non-linear characteristic further complicates the difficulties of
interpreting the classification process.

This paper presents our efforts in opening the black-box of model
building and knowledge extraction from SVMs. We propose our
design and implementation of a web-based visual analysis system that
supports model building using SVMs. The main contributions include:

• An interactive visualization method for exploring data instances,
linear SVMs and their relationships;

• A visual analysis approach for building local linear SVM models
that overcomes the non-linearity of the underlying dataset, and;

• A visual rule extraction method that allows the user to extract
rules that best interpret the models.

2 EASYSVM: OPEN-BOX VISUAL MODELING OF SVMS

Figure 1 shows the analytical scheme for our solution which consist of
three components:

Open-box Visual Modeling for SVMs To enable the user to
quickly determine item relationships, we map the data instances and
SVM models into a 2-D plane with an orthogonal projection. We

design an interactive projection control scheme to support the flexible
exploration of the dataset and the model from different aspects.

Local SVM Building through Visualization Once the data
instances and models are visualized, the user may recognize
non-linearities within the model space. The underlying SVM model
can then be progressively approximated with a sequence of linear
localized SVM models. A suite of visual linkage and comparison
operations are integrated to enable analysts to explore relations
between data instances and SVM models as well as manipulate local
models.

Visual Rule Extraction Rule extraction is interactively performed
along each axis. The user can either select segments on the axes or
select regions from the projected results of data instances and the SVM
models. Each extracted rule can be represented with a hierarchical tree
structure.

This scheme is encapsulated in our EasySVM system, a web-based
interactive visualization system depicted in Figure 2. The system
consists of four main views: a scatterplot view, a projection
management view, a dimension selection view, and a rule extraction
view.

Open-box Visual Modeling
of Linear SVM

Visual Local SVM
Building

Visual
Rule Extraction

Training Data Instances

Classification Rules

Analytical Loop

Fig. 1. Overview of our approach.

2.1 Open-box Visual Modeling of Linear SVM
The traditional SVM model building process can be summarized into
following fours steps: 1) preprocess the data, 2) select parameters, 3)
train the model, and 4) validate the training result. If the validation
result cannot pass the test (e.g. low prediction accuracy on the
test dataset), the process will restart from step 2 again until it
meets the user’s requirement. In our visual model building process,
each of the model building steps aforementioned is enhanced by

1

Fig. 2. Interface of EasySVM: (a) the data view, (b) the view of multiple
projections; (c) the SVM model building view, (d) the rule extraction view,
and (e) the dimension selection view.

interactive visualization and visual exploration methods to facilitate
understanding of the model building process. Meanwhile, additional
data exploration and manipulation can be performed at any model
building step. Figure 3 (a) shows our iterative visual model building
process:

Data Exploration and Initial Training The user can explore the
training dataset to approximate the classification boundaries. Then a
global model is trained with all training data instances and an initial
parameter C in the global SVM model building panel (Figure 2(c)).
After this initial step, the user can perform analysis and operations
iteratively in the following two steps.

Visual Model Exploration and Validation For a trained model,
an initial projection is generated at the direction of the side view.
The user can evaluate the model starting from the side view to locate
misclassified instances, check their distributions and patterns with
projections, view the boundaries near the separating hyper-plane, and
make decisions on data operations. Compared with the traditional
machine learning procedure, the visual exploration of the training
result is devoted to providing insight of the reason why the training
result is. Meanwhile, the prediction accuracy on its own training
dataset is computed and displayed as another reference for model
validation.

Data Manipulation and Parameter Tuning After exploration,
some training data instances that affect the model building can be
modified by changing labels or deleted from the dataset if they are
considered to be noise or instances with invalid values. In addition,
the parameter C can be tuned in this step to balance the trade-off
between margins of the hyper-plane and prediction accuracy on its
training dataset. It is required to re-train the model after these two
operations to update the model and classification results. The model
building process stops when the validation result reaches the user’s
requirement, such as prediction accuracy on a test dataset. It should be
noted that for a dataset with non-linear or even more complex decision
boundaries, local linear models are needed.

The data view (Figure 2(a)) in our system is based on a scatterplot
in which data instances are projected into a low-dimensional subspace.
We use an orthogonal projection to embed high-dimensional data
instances and the SVM model in a 2-D plane. Given an orthogonal
projection matrix AAAm×2 = [fff 1, fff 2], two m-d vectors fff 1, fff 2 span a
2-D plane in the m-dimensional data space where all data instances
involved are projected. Applying it to a high-dimensional data
instance yields a corresponding data point on the 2-D plane, i.e. the

coordinates of data point in the scatterplot view xxx′i = xxxiAAA. It should
be noted that the separating hyper-plane is usually cannot find the
formula of its 2-D projection. We first sample a set of points on
the separating hyper-plane, and then project sample points on 2-D
plane to approximate the hyper-plane. Visual channels including filled
color, border color and shape are employed to present the input label,
predicted label and whether it is a support vector of a data instance.
For the separating hyper-plane of the SVM model, the sample points
are drawn on the view as dots in grey color with smaller size than data
points. Additionally, to visualize the density of training data instances,
a density map is computed and rendered.

To perform visual exploration, an interactive projection control
method is provided for manipulating the direction of the selected
projection. Our method is based on [1], where the control is similar
to the “trackball control” in a high-dimensional data space. A
weight is specified first for each dimension to determine which one
is going to be manipulated, then the user can rotate the projection
plane by dragging the mouse in the scatterplot view. Finally the
user’s mouse action is translated into a rotation matrix and applied
to the projection matrix, thus changing the scatter-plot. To assist
the user in the exploration of the relationships among multiple
projections, we offer a view of multiple projections (Figure 2(b)).
Each projection glyph holds a snapshot of the interesting scatterplot
inside the glyph with the projection matrix. We define the similarity
between two projection glyphs as the Euclidean distance between
two corresponding projection matrices, i.e. ∥AAA1 − AAA2∥2. Thus, the
layout of the glyphs is determined via a local affine multidimensional
projection algorithm. Among multiple projection glyphs, the user
can plan a rotation path containing a sequence of projection glyphs,
then a rotation animation is generated based on interpolation between
adjacent projections along the path with a slider to control the position
of animation.

The orthogonal projection is unable to show high-dimensional
data separation which may cause profound visual clutter. A
dimension selection view (Figure 2(e)) is proposed for filtering out
non-informative dimensions in the classification task. In this view,
three bar charts rank all the dimensions of the training data instances
according to three ranking measures: correlation coefficients between
the dimension and the class labels; signal-to-noise ratio; weighting by
a linear SVM. The user can select the most informative dimensions,
which will be highlighted in the candidate list. After the selection
is confirmed, the projected scatterplot will be updated to apply the
changes. The dimensions that are filtered out will not take part in the
projection process and the future model building process.

2.2 Visual Local SVM Building
For clarity, we use the term “global model” to represent the SVM
model built with the process described in section 2.1, which covers
all the training data instances in the dateset. A “local model”, on the
contrary, is trained on a selected subset of training data instances.

Before building local SVM models, it is necessary to perform a
preliminary exploration of the decision boundary and evaluation of
complexity. First, it is necessary to explore the data distributions,
because the data distribution near the decision boundaries is a strong
indication of the boundary complexity. The user can control the
projection interactively and inspect view the patterns of boundaries
between two classes of data points. Additionally, the user can
explore the decision boundaries guided by the global SVM model.
Although not applicable with low prediction accuracy under the
complex circumstance, the separating hyper-plane of the global SVM
model can act as a guide to the decision boundary. The training
data instances separated into the opposite side of the hyper-plane
always imply local regions containing non-linear boundaries, or even
non-classifiable area with mixed distributions of two classes. The user
can locate the regions in the projected scatter-plot, check the patterns
visually and make further analysis.

Our visual local model building process extends the previous global
one in section 2.1. The key issue is to 1) locate regions-of-interest, and
2) select proper subsets of training data instances for each a local SVM

2

Online Submission ID:

Visual Model Exploration & Validation Data Manipulation & Parameter Tuning

Training

Identification of ROIs

Selection of Training Data Visual Validation

Training

(a) Global Model Building

(b) Local Model Building

Data Exploration & Initial Training

Non-linear boundaries found

C=10

Possible outliers,
noises, etc.

Instances
manipulated

C=0.1

Visualization of
multiple local models

Potential non-linear boundary

ROI

Local SVM #1

Local SVM #2

Local SVM #3

Fig. 3. (a) Global SVM model building process. If a non-linear decision boundary is found, the user can enter the local model building process
illustrated in (b).

model. We propose the following four steps to build local models
iteratively (Figure 3).

Identification of regions-of-interest The target regions are located
via the visual exploration methods illustrated in section 2.2. It should
be pointed out that, when some local models have been created,
each of them but not only the global one can be considered as a
starting point for visual exploration and locating. Local models with
different numbers of training data instances and ranges of coverage
in high-dimensional data spaces will provide diverse levels of details.
The user can select the starting point on demand.

Selection of training data instances The training data instances
of a new local model can be selected directly via user interactions
on the projection view. Moreover, we propose a hierarchical model
creation method based on split-and-merge operations on the created
models. A local model can be split into two new ones by dividing
its corresponding training dataset into two subsets and training two
new models on each subset. The training data instances from several
models can also be merged together. A new local model is trained
on the merged dataset to replace the existing ones. Both operations
change the level of details from different directions. When a model is
split into several multiple ones, the details of the decision boundary
can be “carved out”, while in merging operation a set of models
carrying much detailed information is replaced by a generalized
model. The level-of-detail exploration and incremental model creation
allow the user to depict the decision boundaries and understand the

distributions.
Training Once the parameter C is set for each model, the newly

created or updated local models will be re-trained in this step.
Validation In this step, the training result is to be validated from

two aspects: For a single local model, the same validation methods
for the global model is to be applied; for checking relations and
coverage between multiple models, the projection rotations between
multiple models can be considered as indications of their positions
and directions.

After the local model building process is done, they can be
employed for predicting new data instances. A prediction algorithm is
provided based on the set of local models, where the query instances
are labeled by the nearest local SVM. Algorithm 1 illustrates the
prediction process.

2.2.1 Visualization and Interactions of Multiple Models
The statistical information of existing local SVM models are
displayed. In particular, a matrix is used to encode the similarity
among all models in terms of the number of shared training data
instances. Each matrix cell (i, j) is defined as:

similarity(i, j) =
#(TrSet(Hi)∩TrSet(H j))

#(TrSet(Hi))

where TrSet(Hi) is the training dataset of the local model whose
ID number is equal to i. The matrix is visualized with an

3

Algorithm 1 Prediction procedure of local SVMs
Require:

The decision functions of n local SVMs, Hi(xxx), i = 1,2, . . . ,n;
The training dataset of n local SVMs, XXX i, i = 1,2, . . . ,n;
The query instance, x̂xx;

Ensure:
Label of x̂xx, ŷi;

1: XXXknn = k nearest neighbors of x̂xx in
∪n

i=1 XXX i
2: inearest = argmaxi |XXXknn ∩XXX i|
3: ŷi = Hi(xxx)

opacity-modulated color (green in our system), as shown in Figure
2(c). The opacity of each cell is set to be its similarity.

2.3 Visual Rule Extraction
We denote a rule as a small-sized canonical subspace of the input
high-dimensional data space that may encapsulate some domain
knowledge. The subspace is bounded by a set of dimension intervals,
each of which refers to one or several ranges of a dimension. Thus,
determining a rule is identical to specifying one or several intervals
in each dimension. Each rule denotes a class and assigns the
corresponding class label automatically to the data instances in the
rule.

As shown in the rule extraction view (Figure 2(d)), we apply the
flexible linked axes method to visualize the training data instance. The
position and orientation of the dimension axes can be arranged freely.
Between pairs of axes, the data instances are represented by parallel
coordinate plot-styled edges or scatterplot-styled dots. The user can
directly brushes the axis to select a range or select a region in the
projected scatterplot. After the set of selected ranges is committed,
a new rule glyph that represents the set of ranges, i.e. the rule, is
displayed. In the rule glyph, a parallel coordinates plot is designed to
summarize the dimension intervals. The background color of the rule
glyph encodes its expected class with a unique color.

data instances included in a range should be maximized, because
more training data instances indicate the higher confidence of the rule
while classifying new instances.

3 CASE STUDY

For the Wall-follow Robot Navigation dataset [2], a classifier is
supposed to be trained on a series of 24-dimensional sensor values
to predict the best action. We only use the data instances in
“Move-Forward” and “Sharp-Right-Turn” in our binary classification
(4302 instances in total) and divide the dataset into two parts: 50
percent as the training set, and the other 50 percent as the test set.

Data exploration (Figure 4 (a)) By default, the initial projected
scatter-plot is the same as 2-D scatter-plot with only the first two
dimensions (US0, US1). The user starts from this initial projection and
performs interactive projection control by selecting each of the other
dimensions (US2∼US23). While manipulating dimension US14, a
rough gap appears on a large branch on the right side, which indicates a
potential linear boundary. However, training data instances of different
classes in a smaller branch on the left side are overlapping and seem
impossible to be linearly separated. A snapshot is taken to support
further investigation.

Global SVM model building (Figure 4 (b)) After the preliminary
data exploration, the user trains a global SVM model with all training
data instances. However, the accuracy on the training dataset is around
80% with different settings of parameter C, meaning that the dataset
is not linearly separable. In the side view, a set of wrongly-classified
instances are observed to be scattered near the separating hyper-plane.

Local SVM model building (Figure 4 (b)) The user manipulates
the dimension US14 again to investigate the probable boundary found
before, while the separating hyper-plane is located in a different
direction. Now the user decides to build two separated models for
the two branches. After training two local SVM models, two side
views show that the two corresponding separating hyper-planes are in

(a)

(b)

Many misclassified
training data instances

(c)

Training result of the Global SVM Global SVM

Two local SVMs

Two subsets of training data instances

Initial projection result

Initial projection result

Rough gap in the large branch

Fig. 4. Analyzing the Wall-follow Robot Navigation dataset. (a) After
adding the weight of projection of dimension US14, the dataset is
approximately separated into two branches in the blue and green box. A
rough gap appears in the large branch on the right side. (b) The result of
Global SVM model is not applicable because too many data instances
are misclassified (marked in the two red circles). When increasing
the projection weight on dimension US14, the projection result shows
that the separating hyper-plane of the global SVM model is located
in a different direction to the gap found in the previous step. Two
separate local models are created based on the two branches. (c) Three
classification rules are extracted based on the result of the local model
built on the large branch.

the different directions and give better separation in the regions near
their training datasets, which is also indicated by the two accuracy
values (around 91.3% for the model on the smaller branch and 94.0%
for the one on the larger branch). Animated rotation among the side
views of the global model and the two local models partially depicts
the relations between three separating hyper-planes. Thus, the global
SVM model is replaced by the two local linear ones.

Rule extraction (Figure 4 (c)) Rule extraction operations are
assisted by the two local models. The user chooses to extract rules
for the local model on the large branch. From the weight vector of the
local model, it is obvious that the dimension US14 and US20 dominate
the direction of the separating hyper-plane. Thus the user constructs a
parallel coordinates plot between US14 and US20. The user brushes
three combinations of ranges on the two axes and generates three rules.

Prediction Accuracy The global linear SVM receives 81%± 1.0
on the test set, while the local SVM models receive 88%±3.0.

4 CONCLUSION

In this paper, we propose a novel open-box visual analysis approach
for building SVM models. The user can perform visual exploration
of the dataset and the relations between data instances and SVM
models. Meanwhile, a visual-enhanced local linear model building
approach is dedicated to expanding the traditional linear SVM to deal
with non-linear decision boundaries. Finally we provide a visual rule
extraction method to enable the user to retrieve classification rules
from the model building results.

REFERENCES

[1] D. Cook and A. Buja. Manual controls for high-dimensional data
projections. Journal of Computational and Graphical Statistics,
6(4):464–480, 1997.

[2] A. L. Freire, G. A. Barreto, M. Veloso, and A. T. Varela. Short-term
memory mechanisms in neural network learning of robot navigation tasks:
A case study. In Robotics Symposium (LARS), 2009 6th Latin American,
pages 1–6. IEEE, 2009.

[3] L. Ladicky and P. Torr. Locally linear support vector machines. In
Proceedings of the 28th International Conference on Machine Learning
(ICML), pages 985–992, 2011.

4

	Introduction
	EasySVM: Open-box Visual Modeling of SVMs
	Open-box Visual Modeling of Linear SVM
	Visual Local SVM Building
	Visualization and Interactions of Multiple Models

	Visual Rule Extraction

	Case Study
	Conclusion

