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Abstract— By applying visual analytics techniques to vehicle traffic data, we found a way to visualize and study the relationships 

between the traffic intensity and movement speed on links of a spatially abstracted transportation network. We observed that the 

traffic intensities and speeds in an abstracted network are interrelated in the same way as they are at the level of road segments.  

We developed interactive visual interfaces that support representing these interdependencies by mathematical models, which can 

be then utilized for forecasting not only the expectable normal traffic situation for a given moment and its development over time but 

also how the normal conditions may change due to extraordinary mass movements caused by public events or emergencies. We 

developed further interactive visual tools to support the use of data-derived models for predictive traffic simulation on the basis of an 

abstracted network. We came to a general conclusion that visualization support to predictive analytics, which consists of three 

successive tasks (analyze data – develop models – obtain and analyze forecasts), may need to be developed in an evolutionary 

way. This applies to cases when all tasks cannot be fully defined in advance, but clear definitions for later tasks emerge depending 

on the results of the preceding ones. 

Index Terms— H.2.8.c Data and knowledge visualization, H.2.8.h Interactive data exploration and discovery, I.6.5 Model 

Development, I.6.4 Model Validation and Analysis, I.6.7 Simulation Support Systems

 

INTRODUCTION 

Data concerning vehicle traffic in transportation networks are now 
collected in great amounts owing to advances in sensing 
technologies. These data offer new opportunities for improving the 
understanding of traffic properties and enhancing the accuracy of the 
models describing and forecasting traffic situations and their 
evolution. However, the potential of real traffic data remains largely 
underexploited. By means of visual analytics methods, we performed 
a systematic study of the opportunities hidden in historical traffic 
data. We found out that traffic data covering a sufficiently long time 
period to capture the regular daily and weekly variations allow 
deriving formal models, which can be utilized for predicting not only 
regular traffic flows at different times but also extraordinary flow in 
abnormal situations, such as road closures or mass movements 
caused by public events or emergencies. Predicting unusual traffic 
behaviors on the basis of historical data reflecting only normal 
patterns becomes possible due to reconstruction of interdependencies 
between the traffic intensity (a.k.a. traffic flow or flux) and the mean 
movement speed for different links of the transportation network. 

We developed visual analytics tools that support building of 
formal models capturing the speed – intensity relationships from 
historical data characterizing network-constrained movement of 
physical objects, such as vehicles. Furthermore, we developed visual 
analytics tools that support utilizing the derived models for 
simulation of traffic under various conditions and prediction of 
normal and abnormal traffic behaviors. 

A distinctive feature of our approach to traffic analysis, 
modeling, and simulation is the use of data abstraction and 
generalization for modeling transportation networks and traffic 
properties at different levels of spatial scale. 

1 ABSTRACTION AND GENERALIZATION 

Traffic data may be available in the form of trajectories of moving 
objects. A trajectory consists of records reporting the positions (e.g., 
geographic coordinates) of moving objects at different times. Given 

a large set of trajectories of objects, we apply an existing method [1] 
that derives an abstracted network consisting of cells (territory 
compartments) and links between them. Smaller or larger cells can 
be generated by varying method parameters, thus allowing traffic 
analysis and modeling at a chosen spatial scale. Fig. 1 gives an 
example of an abstracted traffic network for Milan (Italy) 
reconstructed from GPS tracks of 17,241 cars collected over a period 
of one week from Sunday, April 1, to Saturday, April 7, 2007. 

The nodes of an abstracted traffic network are polygonal cells. 
Neighboring cells are connected by pairs of directed links. After 
constructing a network, the original trajectory data are aggregated 
spatially by the nodes and links of the network and temporally by 
time intervals. In our studies, we aggregated vehicle trajectories by 
hourly intervals. The result of the aggregation includes, among 
others, two sets of time series for the links: traffic intensities and 
mean speeds. Traffic intensity on a link, also called traffic flow or 
flux, is the number of objects traversing the link per time unit. 

For the further analysis, we apply data generalization: we cluster 
the links by similarity of the time series of traffic intensity and speed 
(Fig. 2) and then derive general models for the clusters instead of 
trying to consider each link separately. This approach not only 
reduces the workload but also precludes model overfitting. 

2 DERIVING MODELS FOR L INK CLUSTERS 

For model derivation, we apply a methodology [2] in which an 
interactive visual interface to a modeling library is utilized to build a 
model of the temporal variation of the traffic intensity for each 
cluster of links. Triple exponential smoothing (Holt-Winters method) 
is used to model the periodic variation according to the daily and 
weekly cycles.  

To study and quantify the relationships between the traffic 
intensity and the mean speed, the time series of the intensity and 
speed values are transformed in the following way. Let A and B be 
two time-dependent attributes associated with the same object (in 
particular, link) and defined for the same time steps. 
1. Divide the value range of attribute A into intervals. 
2. For each value interval of A:  

a. Find all time steps in which the values of A fit in this interval. 
b. Collect all values of B occurring in these time steps. 
c. From the collected values of B, find the minimum, maximum, 

mean, quartiles, and the 9th decile (i.e., 90th percentile). 
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Fig. 1. An abstraction of the street network of Milan, Italy. 

 
Fig. 2. Links of the abstracted network are clustered by the similarity of 

the variation of the traffic intensity and mean movement speed. 

 
Fig. 3. The dependency series computed for the links of the abstracted 

Milan traffic network are represented graphically. Top: 9th decile of the 

mean speed depending on the traffic intensity. Bottom: Maximal traffic 

intensity depending on the mean speed. 

 
Fig. 4. Polynomial regression models represent the interdependencies 

between the traffic intensity and the mean speed. 

3. For each statistical measure (i.e., minimum, maximum, etc.), 
construct a sequence of values of B corresponding to the value 
intervals of A. 

In this way, a family of attributes is derived: minimum of B, mean of 
B, and so on. For each of the derived attributes, there is a sequence 
of values corresponding to the chosen value intervals of attribute A. 
This sequence is similar to a time series except that the steps are 
based not on time but on values of attribute A. We call such 
sequences dependency series (DS) since they express the 
dependency between attributes A and B. Attribute A is treated as the 
independent variable and B as the dependent variable. 

To model the interdependencies between the mean speed and the 
traffic intensity, we perform two transformations. First, we treat the 
traffic intensity as the independent variable and derive a family of 
attributes expressing the dependency of the mean speed on the traffic 
intensity. Second, we treat the mean speed as the independent 
variable and derive a family of attributes expressing the dependency 
of the traffic intensity on the mean speed. As an example, two graphs 
in Fig. 3 represent the 9th deciles of the mean speeds for different 
traffic intensities (top) and the maximal traffic intensity for different 
mean speeds. The lines in the graphs correspond to the links of the 
abstracted transportation network of Milan. The lines are colored 
according to the cluster membership of the links, as in Fig. 2. 

Fig. 4 demonstrates the derivation of formal models (specifically, 
polynomial regression models) representing the two-way 
dependencies between the mean speed and traffic intensity. 
Analogously to models of the temporal variation, dependency 
models are built for link clusters. The upper and lower parts of Fig. 4 
correspond to the same cluster of links from Milan. In the upper part, 
the dependency of the mean speed on the traffic intensity is modeled. 
In the lower part, a model of the dependency of the traffic intensity 
on the mean speed is built. The models capture the following 
dependencies: (1) As the traffic intensity of a link increases, the 
possible mean speed of movement decreases. (2) When the possible 
speed of movement is low, the number of vehicles capable to 
traverse a link in a time unit is also low. With increasing the possible 
speed up to a certain optimal value, the possible number of 
traversing vehicles per time unit also increases. However, for higher 
speed values, the possible number of vehicles per time unit 
decreases. 

The shapes of the curves in Fig. 4 resemble the fundamental 
diagram of traffic flow [3] describing the relationship between the 
flow velocity and traffic flux (i.e., intensity). The fundamental traffic 
relationships are traditionally defined for street segments, but we 



found in our research that similar relationships exist also on a higher 
level of spatial abstraction. 

The process of modeling the two-way dependencies between the 
traffic intensity and mean speed is described in more detail in a 
recently published book [4]. 

3 USE OF MODELS FOR TRAFFIC PREDICTION 

The models of the temporal variation of the traffic intensity can be 
used for prediction of the regular traffic for chosen time intervals in 
the future, assuming that the properties of the temporal variation do 
not change. When real traffic data are collected on a regular basis, it 
is reasonable to periodically check the models against the real data. 
If the prediction quality degrades, the models need to be updated. 

In our approach, we build models for clusters of links. Each 
model makes a common prediction for all cluster members, but this 
prediction is individually adjusted for each cluster member based on 
the statistics of the distribution of its original values [2]. 

The models of the dependencies between the traffic intensity and 
the mean speed can be used to simulate and predict unusual traffic 
behaviors. The main idea is following:  
1. For each link, determine how many vehicles need to move 

through it in the current minute. 
2. Using the dependency model traffic intensity  mean speed, 

determine the mean speed that is possible for this link load. 
3. Using the dependency model mean speed  traffic intensity, 

determine how many vehicles will actually be able to move 
through the link in this minute. 

4. Promote this number of vehicles to the end place of the link and 
suspend the remaining vehicles in the start place of the link. 
To perform a simulation, the analyst needs to define the scenario 

to be simulated. This includes defining a set of extra objects that will 
be moving in the network in addition to the regular traffic, the 
origins and destinations of their trips, the routes they will follow, and 
the time when each vehicle starts moving. The process of scenario 
definition is supported by a wizard guiding the analyst through the 
required steps and providing visual feedback at each step. 

For Milan, we have performed experiments on simulating the 
movement of a large number of personal cars from the area around 
the San Siro stadium after a soccer game. To be able to simulate this 
scenario, we need to solve the problem of data scaling. The data that 
we used for model building represent not all vehicles that moved in 
Milan but only about 2% of the private cars. We apply the following 
approach. If we need to simulate movements of N private cars, we 
downscale this number to 2% of N, to make it compatible with the 
models. Figs. 5 and 6 present simulated trajectories of 250 cars, 
which correspond to about 12,500 cars in the real scale. 

In Fig. 5, the trajectories are shown as lines in a space-time cube, 
which allows us to see the followed routes and the progress of the 
movement over time. We can spot the places where many cars will 
be suspended, waiting for the possibility to move. The suspensions 
appear in the cube as vertical trajectory segments, which mean that 
the spatial positions do not change as the time passes. 

In Fig. 6, the trajectory lines are drawn on a map, ignoring the 
temporal component. In this view, the routes can be easier related to 
the physical street network of Milan and to the spatially abstracted 
network of linked cells. The red circles on the map are drawn in four 
cells around the San Siro stadium, which we chose as the trip origins 
for the simulated cars. The green circles mark the trip destinations. 
For choosing the destinations, we used the following reasoning. 
After the game, most of the spectators would drive to their home 
places. Hence, the probability of a cell to be a trip destination is 
proportional to the number of people living there. We have no data 
about the spatial distribution of the resident population of Milan; 
however, we have hourly counts of trip ends in the aggregated 
historical data. The number of trip ends in the evening and night 
hours can be expected to correlate with the number of homes in a 
cell, since in the evenings people typically go home. This 
commonsense expectation is consistent with results of empirical 

studies. Hence, the distribution of the trip ends in the evening and 
night can serve as a proxy for the resident population distribution. 
Based on this reasoning, we let the tool distribute the trip 
destinations randomly throughout the territory, so that the probability 
of choosing a cell is proportional to the cell weight, which is the sum 
of the hourly counts of trip ends in the hours from 18:00 to 24:00.  

 
Fig. 5. Simulated trajectories of cars moving from the vicinity of the 

San Siro stadium to supposed home places after a soccer game are 

shown in a space-time cube. 

 
Fig. 6. The simulated trajectories are shown on a map. The red and 

green circles represent the trip origins and destinations, respectively. 

Besides viewing the simulated trajectories in a space-time cube 
and on a map, which may be animated for showing the car 
movements over time, there are further opportunities for analysis. 
The tool aggregates the simulation results for the cells and links by 
time intervals of user-chosen length. Using time graph displays, we 



can analyze the link loads, attained mean speeds, and numbers of 
suspended cars in the cells. Bottlenecks in the transportation 
infrastructure can be revealed. 

After analyzing the predicted development of the traffic situation, 
it is possible to introduce modifications in the scenario (e.g., disable 
the use of some links and/or modify link weights, to model traffic re-
routing) and run a new simulation. Through such “what if” analysis, 
it may be possible to find suitable measures for decreasing traffic 
suspensions and congestions. 

4 CONCLUSION 

In the recent years, our research was strongly focused on analysis of 
data concerning movement [4], including network-constrained 
movement. By developing and applying various visual analytics 
methods, we strived at comprehensive exploration of the potential 
opportunities that can be provided by movement data. 

For network-constrained movement, we found data 
transformations that allowed us to visualize the interdependencies 
between two key aspects of the movement, traffic intensity and 
speed. Having a vivid picture, as in Fig. 3, we noticed common 
patterns and got an idea that the interdependencies can be quantified 
and expressed formally in a uniform way. To implement this idea, 
we developed new visual analytics tools that enabled us to represent 
the dependencies by formal models. This shows that visual analytics 
methods can help analysts not only to gain understanding (i.e., a 
mental model) of a phenomenon represented by data, but also to 
transform this mental model into explicit formal models. 

Our next idea was that the models capturing the traffic intensity – 
speed relationships can allow prediction of not only typical 
movements but also unusual movements that were not represented in 
the original data. This is possible because the models generalize the 
data and can do extrapolation beyond the scope of the data. We have 
developed a traffic simulation tool capable of using the models 
derived from historical data and a visual analytics infrastructure that 
supports definition of traffic scenarios to simulate and analysis of 
simulation results. 

Our research showed a principal possibility of using knowledge 
gained from historical movement data for prediction of development 
of traffic situations, even under unusual conditions. Moreover, one of 
our findings was that the dependencies between the traffic intensity 
and speed existing in a spatially abstracted network are similar to the 
known dependencies existing in road traffic and observed at the level 
of road segments. This opens a potential opportunity for performing 
rapid large-scale simulations of traffic situation developments on 
large territories when fine details are not required. This opportunity 
needs to be comprehensively investigated and tested in collaboration 
with transportation domain specialists. 

A general conclusion concerning the use of visualization for 
predictive analytics that we can draw from our experience is that 
development of methods and tools to support the advancement from 
raw data to predictions can be done in an evolutionary way, as 
explained below.  

At the first stage, analysts need tools enabling understanding and 
discovery of significant patterns. After such tools have been 
developed and applied, and patterns have been revealed, the 
character of these patterns can suggest what kind of formal model 
can be used to capture them.  

At the second stage, analysts need tools for putting the observed 
patterns into formal models. What tools are needed depends on the 
character of the patterns and the type(s) of the model(s), which may 
not be known in advance. Hence, a new round of tool development 
may take place, to enable the second stage to be accomplished. When 
building formal models, analysts envisage how these models can be 
used for prediction.  

At the third stage, analysts need tools enabling them to obtain, 
investigate, and compare predictions for various situations and 
circumstances. This may necessitate a yet new round of tool 

development driven and directed by the new analysts’ goals and 
requirements. 

Hence, predictive analytics consists of three successive tasks 
(analyze data – develop models – obtain and analyze forecasts). 
There may be cases when not all tasks can be fully defined in 
advance; hence, it may be not clear what supporting tools are needed. 
Clearer definitions for later tasks may emerge when previous ones 
are performed and results obtained. This sets requirements for further 
supporting tools. By this evolutionary process involving both tool 
development and analysis, a methodology and a supporting toolkit 
for predictive analytics in a specific application domain can be built. 
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