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Abstract— The Epidemic Simulation System (EpiSimS) is a scalable, complex model for analyzing disease spread within the United
States. Due to the high-dimensional parameter space, the long completion time, and the large amount of output data in a single
EpiSimS run, simulating the entire input parameter space is unfeasible. By taking a granular sampling of the parameter and aggregate
outcome space, regression algorithms can predict outcomes that a particular parameter combination lead to, without having to actually
run the simulation. These predictions are viewable using traditional epidemic visualization components: aggregate line charts and
spatio-temporal mapping. Our ongoing effort is to integrate predictive algorithms into our base EpiSimS viewer, where a user can load
completed runs to build a classifier, choose an arbitrary input parameter set, and see the predicted outcomes using visual means. Our
future work involves developing faster and more accurate prediction algorithms into our system and leveraging prediction to enable
specific location classification and response countermeasures.

1 INTRODUCTION

Disease spread is a complex problem in today’s globalized world.
Introduction of new pathogens to a susceptible population can po-
tentially lead to a pandemic, as susceptible hosts have little defense
against exotic infectors. A number of factors influence a disease’s im-
pact, including transmission rate, incubation period, antiviral supplies,
and population dynamics. Mosquito-borne illnesses such as chikun-
gunya [5] have had recent outbreaks in North America, highlighting
the need to understand the critical parameters in the spread and diffu-
sion of these diseases. Simulation is one way to do this.

Agent-based models (ABMs) are used to simulate the spread of in-
fectious diseases through a population. The Epidemic Simulation Sys-
tem (EpiSimS) is an discrete-event ABM for this task [16]. A single
EpiSimS run generates a large set of temporal, geospatial, and multi-
variate data. It includes population, infectious mosquito vectors, loca-
tion attributes, and sets of logged events noting times and changes in an
agent’s disease progression state. Even for a smaller-tier metropolitan
area such as Washington DC (approximately 500,000 people), a single
run can contain many gigabytes of raw output data. More problem-
atic than the data size, ABM simulations in general can have complex
runtimes. The compute and time-resources required for EpiSimS runs
can scale to hundreds of compute nodes and many hours for larger
population sizes and more complex epidemic models.

For these reasons, it is impractical to simulate for every possible
combination of input parameter space, especially when some parame-
ters have a granularity level down to distinct locations and human de-
mographic groups. Working with EpiSimS scientists and researchers,
we are integrating predictive analytics into our EpiSimS analysis tool.
This allows a user to visually view and analyze the likely outcome
of a simulation without having to actually run it; instead the user can
simply set the pertinent input parameters and perform the predictions
using a regression-based classifier.

This short technical paper describes the process of integrating pre-
dictive analytics into the current EpiSimS viewer and how it visualizes
the predicted outcomes. Our approach is to take a previously com-
pleted set of EpiSimS runs, which represent a coarse-grained sam-
pling, and use these to build a classifier. The classifier predicts out-
put scenarios, both temporally and spatially, when a user selects a
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combination of input parameters. We utilize the Weka API and soft-
ware library of algorithms, integrating it into the EpiSimS viewer, to
build and run the classifier, perform regressions, and predict outcomes.
These predictions are displayed in the viewer’s output components,
namely a line chart showing statistical temporal data, and a map view
showing spatio-temporal disease spread. The predicted outcomes can
be analyzed with the other loaded EpiSimS runs.

2 SYSTEM COMPONENTS AND BACKGROUND

Our system is composed of three pars: EpiSImS data, an interactive
viewer, and a prediction module.

2.1 EpiSimS
EpiSimS (or Epidemic Simulation System) is a large-scale, discrete-
event, ABM for infectious diseases in the United States. It is highly
customizable in disease states and progression, human demograph-
ics and behavior patterns, potential countermeasure actions, and geo-
graphic location attributes. For prior research using the EpiSimS sys-
tem, see [10, 7, 9, 16]. The EpiSimS team recently integrated a patch-
based (also called a vector-based) model of infectious disease spread
into their simulation [8], that allows for simulation of mosquito-borne
illnesses. In these scenarios, mosquitoes infect humans, which then
mosquitoes, and so on. Mosquito disease dynamics are represented
by an ODE model. If infected, humans progressed through a series of
stages, before eventually recovering.

2.2 Disease Visualization and the EpiSimS Viewer
Working with EpiSimS scientists, we built a viewer to analyze
EpiSimS results. Visualization has long played an important tool in
assisting both the study and analysis of disease spread. Traditional
disease visualizations make heavy use of statistical charts or map
views to show different aspects of the data, such as temporal or spatial
progression[4, 1, 11, 2], and form the base of our system.

Before being able to view a completed EpiSimS run, the raw out-
put data must be pre-processed in a data-management application and
uploaded. The processed data is stored in a PostgreSQL database, and
can then be queried and interactively analyzed in the viewer, which is
built using Processing and Java. Multiple runs can be loaded into the
viewer for analysis, and both the input parameters and output data can
be shown.

Selected input parameters are shown in a parallel coordinates view.
For this current work, only a subset of the parameters were analyzed:
the disease transmission rate (β ), the mosquito densities (Kv) at lo-
cations, and the relative safety (of being bit by a mosquito) when a
person is indoors vs when the person is outdoors (homeIo, workIo,
and schoolIo). For viewing output components, a user can load dif-
ferent visualizations, such as line charts, maps, or clusterings. For



Fig. 1: The EpiSimS viewer, with four components noted: (A) input parameters, (B) map view, (C) output lines chart, and (D) currently loaded
runs. The highlighted orange polyline shows in (A) shows the user selected input parameters, which closely mimic an already-run EpiSimS
simulation (highlighted in green). The orange line in (C) shows the predicted output line chart and the map view (B) shows the predicted density
for day 100, based on the user-defined combination of input parameters in component (A). The green line in (C) shows the highlighted EpiSimS
run.

the current work, we limit output views only to what we predict on:
the output lines chart and the map viewer. The lines chart shows ag-
gregated statistical information over time, such as “new infections per
day,” or “attack rate per day.” The map shows the spatial diffusion
of the epidemic for a single run on a selected day, based on a kernel
density estimation [14] using a normal distribution function. For inter-
active levels of response, in the data pre-processing steps we store spa-
tial density data hierarchically in a pyramid grid tiling scheme. This
is similar to how tiles in slippy maps are stored (see [13] for an exam-
ple). Data is first stored at the lowest tile or region grains, and then
at successively higher, aggregated, levels in a tiled grid. For rendering
a map view, the viewer needs only to return grid points based on the
current view and zoom and then build the density layer based upon the
grid’s infection values.

2.3 Prediction

Machine learning and data mining can be utilized for predicting out-
come targets, based on training from prior, known data. Prediction it-
self has been extensively used in real-world disease forecasting; some
examples include [12, 17], and it has also been used in modeling epi-
demic simulations [15]. In our case, we are making predictions using
the EpiSimS runs themsevles, to predict likely output based on a user-
defined set of input parameters.

To accomplish this, we use the the Weka API and libraries. Weka
is a suite of software for data mining tasks [3]. It incorporates several
standard machine learning algorithms and techniques (and allows for
development of new ones) for pre-processing, classification, training,
regression, clustering, association rules, and even visualization. It can
be used as a standalone tool, using input files to test, train, and predict
on, or it can be integrated into an existing project. In the Weka context,
the machine learning algorithm is called a classifier. The classifier is
built using a training set of data, and then can be tested for accuracy
or used to make predictions.

3 INTEGRATING PREDICTION INTO THE EPISIMS VIEWER

This section describes our current work in integrating Weka into the
EpiSimS viewer. There are four main components in the viewer that
we interact with for prediction, as shown in Figure 1. These are: (A)
the currently loaded input parameters, (B) the map view, (C) the output
line chart view, and (D) the currently loaded runs list. Before being
able to make a prediction, the user must select a set of runs to load into
the viewer and selects the input attributes they want to use. The loaded
simulations are shown in the runs list (D), and the input parameters are
shown in the parallel coordinates view (A).

Each polyline in the parallel coordinates component (Figure 1A)
represents a single run. There are two types of input parameters that
can be represented. Some parameters, such as β (which is the epi-
demic transmission rate) are a single constant value for a run. Others,
such as the “location count per Kv,” have specific values set for each
location within the simulation. For this particular case, there are 5000
potential Kv values on the x-axis that a location can fall into, where
Kv denotes number of mosquitoes at that location. The y-axis here de-
notes the number of locations with that Kv value. To avoid having to
account for all 5000 potential spaces invidividually when making our
prediction, we instead aggregate into a smaller, user-defined number
of buckets and take the average value from those buckets (see Figure
2). We then treat each bucket as an input attribute for use in prediction.

The goal of prediction is to view the likely output based on the
input parameters chosen by a user. For example, if there are five sin-
gle parameters and one location-specific parameter that’s been broken
into eight buckets (as in Figure 1), the input parameter space contains
thirteen input attributes to build our classifier. To this, we add line
chart and map density point data. The classifier is trained on this data,
and then can predict output data for the line chart and the map. Since
both the line chart and map have a large domain (the line chart shows
300 simulated days and the map covers 35,000 raw locations for the
loaded simulations in Figure 1), we use sampling and aggregation to



Fig. 2: Breaking up an input parameter with 5000 potential slots into
eight buckets (shown in pink). The number of buckets can be set by
the user, and the value for each bucket is the average of all the values
inside.

Fig. 3: An example of predicting the attack rate output over time. For
the time-dependent predictions in the line chart, we first discretize the
prior runs (the blue lines) into discrete, sampled steps, and use a nor-
mal distribution function to smooth the data for the input runs. In this
case, 25 days have been sampled and smoothed, as denoted by the ver-
tical grey lines. We then regress on each sampled day to generate an
overall prediction.

lessen the number of values needed to classify and predict on.
For the line chart, the user sets a number of days to sample on. An

example of this is shown in Figure 3, where fifty days are sampled out
of a total of 300. To avoid missing spikes and outliers, a normal dis-
tribution is applied on each sampled day to smooth it and and include
the effect of the surrounding days. The set of sampled points for each
completed run is included in building the classifier. When a parameter
combination is made and a prediction done, there is an estimate for
each sampled day.

For the map view, instead of predicting on each location individu-
ally, we utilize the tiled aggregation data points. Based on the map’s
latitude and longitude boundaries, and the current zoom level, a set of
aggregated points that fill certain geographic, temporal, and zoom con-
straints are retrieved from the database. As these points already repre-
sent a more granular level of data, they require less overall work when
used generate a classifier and make predictions. (Usually 200-300 per
run, depending on the zoom level, map size, and day). Each density
point is independently predicted (Figure 4a), and the KDE layer is then
applied using the predicted values for that day (Figure 4b).

When using the WEKA API, you first choose an algorithm, and
then feed it training data to build a classifier. After this, testing data
can be used to check its accuracy, and predictions can be made. Since
EpiSimS runs are time-consuming to compute and post-process, there
are only a limited number available for training and testing purposes.
Since we are using regression to predict numerical outcome values (for
example, the total number of infected persons at a particular day in the
line chart), we must choose a regression algorithm to classify and pre-
dict. Currently, we are using Weka’s M5P regression tree algorithm.
From the set of loaded runs in the viewer, we utilize a percentage
of these (80%) for training to build the classifier, and the remainder
(34%) for testing, if desired. Building the classifier is a one time pro-
cess, based on the loaded data in the sim, although if more runs are
added, then it can be rebuilt. When a user draws or selects a new input
parameter configuration and chooses to predict its outputs, the classi-

(a)

(b)

Fig. 4: (a) A regular grid of points is used to build the KDE layer in
the map, showing the spatial spread of the epidemic. A prediction is
made for each point in the grid. (b) The result of applying the KDE
based on the predicted values in the grid.

fier iterates through and predicts the output values for the lines chart
and for the aggregate density points on the map.

Figure 1 shows an example of a completed prediction. The orange
polyline in Figure 1A shows a user’s input parameter combination.
One particular EpiSimS run is very similar to this parameter combi-
nation, and it has been highlighted in green. Figure 1C shows the
predicted line chart outcome in orange, and the similar run’s output
in green. The predicted density mapping at day 100 is shown in Fig-
ure 1B. In these two particular runs, there is a low transmission rate
(β ), but a high number of mosquitoes and high indoor vs outdoor in-
fectivity at home, work, and school. These characteristics lead to a
moderately high outbreak, although it would probably be even more
extensive if the β value had been higher.

4 CONCLUSIONS AND FUTURE WORK

This short paper goes over an ongoing project of integrating predictive
analytics into the EpiSimS analytics viewer. EpiSimS is a large, com-
plex, time-consuming simulation with a large input parameter space.
By utilizing prediction, we can take a coarse-grained sampling of var-
ious parameter combinations and estimate spread, diffusion, and the
overall lifecycle of EpiSimS runs without having to actually perform



the simulations. This saves both time and compute resources. Our cur-
rent efforts are focused on customizing and improving the classifiers
and visualizations used in this data, making them more robust, accu-
rate, and flexible within the current viewer. For example, our current
spatial prediction predicts each point independently, without regard to
the surrounding neighborhood. [6] is an example of a spatio-temporal
prediction mapping that is much more refined than ours.

As a future direction, we are investigating using contextually novel
or unorthodox visual plots and techniques for fine-grained location
and region prediction. EpiSimS scientists are interested in predict-
ing dangerous places, demographics, and disease warning signs, and
seeing how localized countermeasures can affect the overall disease
spread. If such places or signs are known or predicted prior to the dis-
ease becoming a full-blown pandemic, then countermeasures can be
taken. Prior EpiSimS efforts have demonstrated that high-traffic loca-
tions such as schools or businesses can be a hotspot for spread. By
generating fine-grained predictions about which individual locations
or regions are likely to be catalysts for spread, a scientists could em-
ploy specific countermeasures and location closures early in disease,
limiting its impact. [6] does a spatial prediction for resource alloca-
tion, but utilizes standard spatial mappings to do. We are working to
leverage both innovative visualization techniques and predictive algo-
rithms to assist these types of interactions and analysis.
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