Interactive Visualizations for Deep Learning
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Fig. 1. This SentimentTree visualization shows how word-level sentiments build up over multi-word phrases to produce the over-

all sentiment associated with a sentence. Leaf nodes represent individual words such as Steven,
Non-terminal nodes represent phrases such as glorious failure. The root node represents the full sentence:
is a failure it is a glorious failure. Colors encode sentiment ratings given by human

Soderbergh’s ‘Solaris’

Solaris, and failure.
If Steven

subjects, where blue is positive and red is negative. Human raters find the majority of words in this sentence to be neutral with the
exceptions of failure being negative and glorious being positive. Sentiment compositionality comes from combining words or
phrases to form longer text, but the resulting ratings can take many forms. The phrase glorious failure is rated as negatively
as the word failure itself. However, while the two main clauses of this sentence, Steven Soderbergh’s ‘Solaris’ is a
failureand it is a glorious failure are both negatively rated, their concatenation suggests an overall positive view about
the film Solaris. Our algorithm produces the current state-of-the-art accuracy on sentence-level sentiment predictions.
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INTRODUCTION

associated with feature engineering for supervised machine learning,

We describe how interaction visualizations contribute to the develop-
ment and deployment of Deeply Moving: Deep Learning for Senti-
ment Analysis, a state-of-the-art classifier for sentence-level sentiment
predictions. During model development, we create a SentimentTree
visualization to facilitate explorations of user-labeled data as well as
studying the model’s characteristics. Designed to work at two zoom
levels, the visualization is suitable for inspecting both individual data
instances as well as a corpus of 10,000 data points. Beyond initial in-
ternal use, the visualization is also deployed on the web to collect user
corrections and enable continued refinement of the algorithm.

We apply additional visual analysis techniques to aid feature engi-
neering during model design. While our primary analysis task is akin
to data exploratory over a high dimensional space, we find that exist-
ing multi-dimensional visualization techniques do not offer sufficient
explanatory power to support our task. We examine analysis needs
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the gap in available tools, and the potential for future research in both
visual analysis and machine learning.

2 SENTIMENT ANALYSIS

Most approaches in sentiment analysis are based on bag-of-words rep-
resentations [3] treating a sentence as frequency counts of its con-
stituent words — or heuristics [6] that extract known aspects about
specific domains such as restaurant reviews being comprised of ratings
on food, ambience, and service. The sentiment associated with a sen-
tence is then computed by summing or voting on word- or aspect-level
sentiments. However, such approaches ignore the linguistic structure
of a sentence, and can fail to capture opinions expressed in texts with
more complex constructions, as shown in Figure 1.
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Our work builds on several areas of natural language processing. First,
prior research in semantic vector spaces [8] finds that multiple inter-
pretations of a word can be captured through word vector presentations
that account for a word’s context of use, though they do not work well
for longer phrases. Second, Mitchell et al. [1] shows that composition-
ality in the word vector space — such as additions and multiplications
of word vectors — can produce semantically meaningful categories of
words. Third, Zettlemoyer et al. [9] shows that logical forms can be
applied to sentiment compositionality. Finally, Pollack [4] demon-
strates that compositionality can be incorporated into neural networks.
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Fig. 2. The simplified representation allows for an overview of the annotated corpus and more rapid browsing.

2.2 Sentiment Prediction with Deep Learning

Our work on recursive neural tensor network [7], a class of deep learn-
ing algorithms, produces predictive models that take a sentence as in-
put and estimate the overall sentiment expressed in the sentence.

Through a bottom-up process, our models first estimate word-level
sentiments and represent them as feature vectors; they then composi-
tionally combine the sentiments and features vectors for multi-word
phrases through a parse tree, until reaching the full sentence. The
compositional functions are learned by training the models on a large
corpus of annotated sentences.

We demonstrate our model on a dataset of 11,855 sentences ex-
tracted from movie reviews on Rotten Tomatoes [2]; the sentences
contain a total of 215,154 phrases within their parse trees. We used
Amazon Mechanical Turk to obtain three human sentiment ratings for
each sentence and phrase.

3 SENTIMENTTREE VISUALIZATION

We devise the SentimentTree visualization for inspecting the senti-
ments associated with a sentence, as they build up from words to
phrases along a linguistic parse tree. We utilize the visualization for
several purposes: exploring the annotated corpus, examining model
predictions, identifying patterns of misclassifications, and support-
ing experimental designs. Feedback from domain experts highlight
the need for multiple levels of zoom and effective data specification.
Though initially designed for internal use, the visualization is now de-
ployed publicly to support online learning.

3.1 Visual Design

Two early design decisions pertain to the orientation of the tree and
the placement of text labels, both of which were largely determined by
domain-specific considerations.

Leaf nodes in a parse tree represent words. Words can have varying
number of characters, with corresponding text labels that vary greatly
in length. During prototyping, we find that by laying out the parse tree
horizontally (with the root of the tree on the left side and leave nodes
on the right), we can allocate a fixed height to each leaf node, and
generate nicely-formatted trees while allowing text labels to extend
unobscured to the right. However, such designs were met with fierce
resistance from collaborators in natural language processing, where
the convention is to always render parse trees vertically.

Our final design, as shown in Figure 1, applies a vertical layout and
determines node widths in proportion to its word length. Though it
may unintentionally emphasize longer words, domain experts find the
layout more intuitive. Lay users also find reading across the screen to
be more natural than down the screen, as for vertical layout.

3.2 Usages of the Visualization

The visualization allows us to explore the annotated corpus, so that
we can build up an intuition on how people perceive the sentiment of
a passage of text. For example, we find that many of the words and
phrases are labeled as neutral. Stronger sentiments tend to build up in
longer phrases; the majority of the shorter phrases are rated as neutral.
Such findings suggest limitations to previous approaches that try to
predict sentence-level sentiment by voting on word-level sentiments
without additional linguistic structure information.

The SentimentTree visualization also allows us to track the perfor-
mance of the model along all stages of its modeling pipeline. While
our ultimate goal is to ensure accurate sentence-level predictions, these
additional details allow us to build up a profile of the model perfor-
mance for shorter phrases and words. By comparing such profiles to
observed human ratings, we find insignificant differences when we
reduce our algorithm from a 25-class prediction problem (estimating
sentiment with 25 levels of granularity) down to a 5-class prediction
problem (estimating only five levels of sentiments: positive, somewhat
positive, neutral, somewhat negative, and negative).

Furthermore, we superimpose model output on top of the user-
supplied sentiment ratings in the visualization, to identify sources of
misclassification errors. The visualization also contributes to our ex-
periments on contrastive conjunctions and negations. Supporting these
latter two tasks, however, requires additional visualization and inter-
action support.

3.3 Two Levels of Zoom: Overview and Details

While rendering a single tree is already useful, domain experts quickly
find themselves wanting (and eventually needing) to browse the full
corpus of over 10,000 sentences more efficiently.

However, as each sentence in the dataset generates a different parse
tree, these trees have no correspondences among their structures to
allow for aggregation. By carefully adjusting the visual aesthetics, we
find that we can shrink each tree by up to a couple orders of magnitude
in area while preserving their overall shape. We develop a simplified
representation by removing the text labels and adjusting the relative
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Fig. 3. User interface for specifying common search queries over the collection of parse trees representing the annotated corpus.

node size and edge length. A simplified view is designed to animate
smoothly to a detailed view, and vice versa. By providing two levels
of zoom, we are able to display up to hundreds of trees in a single
monitor (Figure 2) and support more rapid scanning.

3.4 Interactions to Support Data Specification

Another issue of working with complex internal model structure is the
lack of a natural means to search or filter data instances.

Let’s consider Shneiderman’s visual information-seeking mantra
[5] that recommends overview first, zoom and filter, then details-on-
demand. With the simplified and detailed representations and the ca-
pability to display text labels and superimpose model output, our tool
now supports every operation specified in the mantra, except for fil-
tering. However, unlike more traditional numerical data types where
filtering operations can be defined via equality tests or over a range
of numbers, filtering is ill-defined for our dataset of trees, each with a
unique structure.

We define the filter operation as search over all subtrees within
the corpus of parse trees. As our visualization is implemented in
javascript, we leverage the functional nature of the language, and per-
mit users to pass in functions that can be recursively applied to all
nodes belonging to a tree, as a means to select data instances of in-
terest. Such operations occur frequently during model design. For
example, when a researcher identifies a misclassified data instance,
she may wish to investigate whether certain linguistic structures are
causing problems for the model. She may wish to find all other data
instances exhibiting similar linguistic structures, such as “sentences
containing a contrastive conjunction (e.g., but) followed by a negation
word more than 10 words away”, in order to determine whether the
problem is systematic.

We subsequently develop a user interface for specifying common
queries (Figure 3). Per best practices for search user interfaces, we also
add a text box for general purpose text search. We include a descriptive
phrase at the top, to help users understand the actions of their queries.

3.5 Deployment and Online Learning

While initially designed for internal use, the visualization has since
been deployed on the web at http://nlp.stanford.edu/
sentiment.

The visualization helps explain the action of our algorithm to lay
users. We also utilize the visualization as an input tool, to elicit user
feedback on any modeling errors and use such corrections to continu-
ously improve the performance of our model.

4 FEATURE ENGINEERING

We also apply visual analysis techniques to feature engineering, a sub-
task within model development where researchers turn unstructured
text into linguistic features amenable to statistical analysis. Feature

engineering allows researchers to leverage insights they have about a
corpus, a model, or a specific domain, and operationalize them as fea-
tures can then be fed into the predictive algorithm.

4.1 Improving Classifier Performance

Research in natural language processing has produced a large body of
useful linguistic features that can be used as the initial feature set. In
our experiences, rather than identifying globally useful features, fea-
ture engineering more often concerns (1) identifying additional fea-
tures that complement the existing feature set to reduce misclassifi-
cation errors, in a process known as boosting or (2) preventing the
model from overfitting to specific features, which improves the appar-
ent accuracy of the model on known data instances but causes prob-
lems when the model is applied to unseen data.

4.2 Multi-Dimensional Visualizations

We point out that both tasks involve exploring a high-dimensional
space for recognizable patterns. One way to approach boosting is to
identify regions of high-dimensional feature space with a high den-
sity of misclassified instances. Uncovering such regions may help
model builders craft additional features that target recurring misclas-
sifications. Similarly, one way to recognize overfitting is to identify
regions of the solution space (where the space is the combination of
parameters and features that define a model) where model prediction
accuracy on test data consistently falls.

However, we find that existing multi-dimensional visualization
techniques perform poorly despite what appears to be their intended
use. Categorically, we find three general approaches to high dimen-
sional visualization: (1) “Overview” through the projection or rescal-
ing of the entire solution space. In these tools, users interact with all
data dimensions that are mixed into two or three principal axes. The
layout of the such visualizations, in theory, also account for interac-
tions between all data dimensions. (2) “Independent axes” such as
parallel coordinates. Users may interact with hundreds of dimensions
independently, but see only a small number of interactions between
select pairs of the data dimensions (3) “Pairwise interactions” such as
scatter plot matrices that present a small number of dimensions and all
pairwise interactions between the dimensions.

For both cases, we are typically examine dozens data dimensions of
interest. Overviews don’t generally provide sufficient details to inspect
the dimensions of interest. Visualizations of independent axes help
access the quality of features in isolation, but do not provide support to
test combinations of the dimensions. While visualizations of pairwise
interactions generally do not scale up sufficiently.

We extract relevant dimensions of the multidimensional space, and
interactively explore them as multiple tables in Tableau.
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5 CONCLUSIONS

In this paper, we reflect on our own experiences applying visual anal-
ysis to the development of a deep learning model for sentiment anal-
ysis. We highlight the various roles visualizations played throughout
the initial data exploration, model design, and model deployment.
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